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Abstract

Analytical solutions for temperature distributions, heat transfer coefficients, and Nusselt numbers of steady elec-

troosmotic flows are obtained for two-dimensional straight microchannels. This analysis is based on an infinitesimal

electric double layer in which flow velocity becomes ‘‘plug-like’’, except very close to the wall. Both constant surface

temperature and constant surface heat flux conditions are considered in this study. Separation of variables technique is

applied to obtain analytical solutions of temperature distributions from the energy equation of electroosmotically

driven flows. The thermal analysis considers interaction among inertial, diffusive and Joule heating terms in order to

obtain thermally developing behavior of electroosmotic flows. Heat transfer characteristics are presented for low

Reynolds number microflows where the viscous and electric field terms are very dominant. For the parameter range

studied here (Re6 0:7), the Nusselt number is independent of the thermal Peclet number, except in the thermally

developing region. Analytical results for cases with and without Joule heating are also compared with the existing heat

transfer results, and an excellent agreement is obtained between them.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Electroosmosis, one of the main electrokinetic effects,

is the process by which an ionized liquid moves with

respect to a stationary charged surface under the action

of an external electric field. The electroosmotic phe-

nomenon was first observed by Ruess in 1809 from an

experimental study on clay diaphragms [1]. In the mid-

19th century, Wiedemann repeated the experiment and

formally introduced the mathematical theory behind it

[2]. Though the electroosmotic phenomenon has been

known for more than a century, the application of

electroosmotic flow was only limited in the field of

analytical chemistry to transport samples in capillaries.

But, recent developments in microelectronics and micro-
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electro-mechanical systems (MEMS) have made a

breakthrough progress toward utilizing electroosmotic

flows in complex microfluidic networks for ‘‘lab-on-a-

chip’’ applications. Lately, scientists at Sandia National

Lab [3] and Stanford University [4,5] have successfully

developed electrokinetic micropumps capable of creat-

ing in excess of 20 atm by packing micron sized non-

porous silica particles in a 500–900 lm diameter fused

silica capillary. Due to the ability of pumping a wide

range of working fluid, this non-mechanical pumping

has become an attractive fluid handling method in the

emerging ‘‘lab-on-a-chip’’ microfluidic devices for sam-

ple loading, mixing, flushing and reagent transporting

[6,7]. So far, most of the studies have been focused only

on the fluid flow behavior where the velocity distribution

is plug like in most of the channel [8–12], and not much

attention has been paid on the thermal behavior.

One of the main objectives of electroosmotic action is

to generate pressure head for pumping liquid in micro-

fluidic devices for bioanalytical applications. Here the
ed.
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Nomenclature

AC cross-sectional area of a microchannel [m2]

cp specific heat at constant pressure [J/(kgK)]

D half channel height [m]

DH hydraulic diameter [m]
~E applied electric field [V/m]

Ex electric field component in the streamwise

direction [V/m]

e electron charge [C]

G non-dimensional generation term

h local heat transfer coefficient [W/(m2 K)]

k thermal conductivity [W/(mK)]

kB Boltzmann constant [J/K]

L channel length [m]

_m mass-flow rate [kg/s]

n0 average number of positive/negative ions in

the buffer [1/m3]

Nu Nusselt number, Dh=k
PeT thermal Peclet number, Re � Pr
Pr Prandtl number, m=a
q00s surface heat flux [W/m2]

Re Reynolds number, umD=m
Rev ratio of Joule heating to viscous dissipation

T temperature [K]

u velocity component in the streamwise

direction [m/s]

uHS Helmholtz–Smoluchowski velocity [m/s]
~V velocity field [m/s]

v velocity component in the cross-stream

direction [m/s]

W channel width [m]

z valence

Greek symbols

a thermal diffusivity, k=ðqcpÞ [m2/s]

an Fourier coefficient

b0 Fourier coefficient

bn Fourier coefficient

d99 effective Debye layer thickness [m]

e permittivity of the medium [C/(V m)]

U viscous dissipation function

cn exponential decay parameter,

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2T þ 4kn

p
� PeTÞ=2

g non-dimensional cross-stream distance,

y=D
k Debye length [m]

kn eigenvalues

l dynamic viscosity coefficient [N s/m2]

h non-dimensional temperature

ha auxiliary temperature field

hp particular type of function

Dh non-dimensional temperature difference

hs � h
qf fluid density [kg/m3]

qe electric charge density [C/m3]

r electrical conductivity of the buffer fluid

[S/m]

t kinetic viscosity [m2/s]

n non-dimensional streamwise distance

x=D
w electrokinetic potential [V]

f zeta potential [V]

Subscripts

c centerline

h homogenous

i inlet

m mean

o non-homogenous

s surface
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pumping action can be achieved by applying a very high

external electric field along the channel. This high

external electric field creates both conduction and con-

vection current in the liquid, where convection current

contributes to net flow in the system and conduction

current generates volumetric Joule heating in the system

[8]. This Joule heating effect is very significant for high

electric field strength and/or highly conductive buffer.

Since Joule heating is a volumetric phenomenon, its

magnitude is directly related to the channel volume. In

typical electroosmotic flows with a fluid of 10�3 S/m

electrical conductivity and an applied electric field of 10

V/mm, the Joule heating term contributes 105 W/m3.

Depending on the surface (thermal) conditions, this

thermal energy may elevate the system enthalpy signifi-

cantly [13]. The thermal energy generation and the

associated dissipation mechanisms have received very
little attention, especially for electroosmotic microflows.

However, there are several analytical and experimental

works that appeared in literature describing the effect of

Joule heating in capillary electrophoresis for identical

electric field and ion concentration [14,15]. Those works

identified thermal band broadening due to Joule heating.

Explicit analytical solutions have been reported in

the past for both developing and fully developed thermal

transport problems with or without volumetric heat

generation. In a seminal work, Sparrow and co-workers

[16] studied the effect of an arbitrary generation term in

pressure driven thermally developing flows, and they

obtained analytical solutions for heat transfer charac-

teristics. Their framework is very similar to this study,

but in our case the hydraulically fully developed elec-

troosmotic (plug like) velocity is used instead of pressure

driven parabolic velocity profiles. In literature there also
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exist numerous heat transfer studies in the slug flows

both in parallel plates and in circular channels [17,18],

where they have not considered any Joule heating or

generation terms. Recently, Maynes and Webb have

presented thermal analysis of electroosmotic flows for

circular tubes and parallel plates under Debye Huckel

linearization [19]. However, that study is limited only to

the fully developed thermal region.

In this article, we obtain analytical solutions for

temperature distributions and heat transfer characteris-

tics for thermally developing steady electroosmotic flow

in two-dimensional straight microchannels. Our analysis

takes care of the interaction among convection, viscous,

and Joule heating terms to obtain the temperature dis-

tribution of the fluid in microchannels. This analysis

identifies the effects of Joule heating during electroos-

motic pumping in designing electroosmotically driven

micropumps, valves, and mixers where surface can be

maintained either at constant temperature or at constant

heat flux with the surrounding.
2. Theory

The formation of electroosmotic flow in a straight

microchannel is shown in Fig. 1. Here the channel walls

attain net negative charges due to ionization, ion

absorption, or ion adsorption from the polar liquid next

to the solid surface. These trapped surface charges sig-

nificantly influence the distribution of ions in the liquid

side. Due to the presence of negative charges on the

surface, positive ions from the solution get attracted to

the channel surface, and negative ions get repelled from

the surface, forming an electric double layer (EDL) very

close to the channel wall. The EDL is typically 1–30 nm

thick depending on the concentration of the solutions.

For example, ion concentrations of 1 and 100 mM

correspond to EDL thickness of 10 and 1 nm, respec-

tively. In the EDL, the ion density of counter-ions is

greater than that of co-ions. The electroosmotic micro-

flow occurs when an EDL interacts with the externally

applied electric fields. In Fig. 1, the positively charged

ions of EDL are attracted towards cathode and repelled
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Fig. 1. Schematic view of electroosmotic flow between two

parallel plates subjected to constant heat flux boundary con-

ditions at the top and bottom surfaces.
by the anode. This results in the net movement of ion-

ized fluid in the direction of the electric field.

2.1. Governing equations

The steady electroosmotic flow is governed by the

modified Navier–Stokes equations as [20]

qfð~V � rÞ~V � lr2~V þrP � qe
~E ¼ 0 ð1Þ

where qf is the fluid density, l is the dynamic viscosity,~E
is the applied electric field, and ~V ¼ ðu; vÞ is the velocity
field. The incompressibility condition requires a diver-

gence free velocity field (r � ~V ¼ 0), subjected to no slip

and no penetration boundary conditions at the surface.

The first and second terms of Eq. (1) indicate the inertia

and viscous forces, respectively. While the third term

shows the pressure force, and the final term, qe
~E, rep-

resents the electrokinetic body force due to the forma-

tion of the EDL next to the surface. Here qe is the

electric charge density, and for a symmetric univalent

dilute electrolyte it can be found as [20]

qe ¼ �2n0ez sinh
ezw
kBT

� �
ð2Þ

where w is the electrokinetic potential, n0 is the average
number of positive or negative ions in the buffer, e is the
electron charge, z is the valence, kB is the Boltzmann

constant, and T is the absolute temperature. At steady

state, the electrokinetic potential, w, can be obtained

from the Poisson–Boltzmann equation as [21]

r2w ¼ � qe

e
ð3Þ

where e is the permittivity of the medium.

For steady electroosmotic microflow, the governing

equation for thermal energy transport can be presented

as

qfcpð~V � rÞT �r � ðkrT Þ � lU � rð~E �~EÞ ¼ 0 ð4Þ

where cp is the specific heat capacity, T is the tempera-

ture, k is the thermal conductivity, U is the viscous dis-

sipation, and r is the electrical conductivity of the buffer

fluid. The first and second terms of Eq. (4) indicate the

thermal energy transfer due to convection and thermal

diffusion, respectively, while the third and fourth terms

show thermal energy generation in the system due to

viscous dissipation and Joule heating, respectively.
2.2. Assumptions and approximations

The main simplifying assumptions and approxima-

tions in our analysis are as follows:

• The fluid viscosity is independent of the shear rate.

Hence, we assume a Newtonian fluid.



Table 1

Typical length scale, electrokinetic and flow parameters con-

sidered in this theoretical work

Parameter Notation

(Unit)

Range

Half channel height D (lm) 10–300

Electrolyte concentration n0 (mM) 1–100

Debye length k (nm) 3–30

Characteristic length ratio D=k 1000–30,000

Axial electric field Ex (V/mm) 1–300

Zeta potential f (mV) )100 to )25
Reynolds number Re 0.001–0.700

Peclet number PeT 0.001–5.000
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• The fluid viscosity is independent of the local electric

field strength. This condition is an approximation.

Since the ion concentration and the electric field

strength within the EDL are increased, the viscosity

of the fluid may be affected.

• The Poisson–Boltzmann equation is valid when the

ion convection effects are negligible. Hence, our anal-

ysis is valid for Stokes flows, or for hydraulically fully

developed channel flows.

• The solvent is continuous, and its permittivity is not

affected by the overall and the local electric field

strength.

• The ions are point charges.

• The zeta potential is uniform throughout the channel

wall. Hence relatively low temperature variation in

the system is assumed.

• Joule heating takes place uniformly throughout the

channel.

• Fluid properties are independent of temperature

change. This can be justified for smaller temperature

change (less than 10 K).

• No pressure driven component is present in the veloc-

ity distribution.

2.3. Analysis of pure electroosmotic flow

Electroosmotic flow in microchannels has been

extensively studied in the past, and detailed analysis of

electroosmotic flow can be obtained from earlier flow

studies [8–11]. In this study, we review the necessary

parameters for the complete understanding of the elec-

troosmotic phenomena. From experimental studies it

has been found that microchannel electroosmotic flow is

generally very slow in nature with very low Reynolds

number, Re 	 1. Therefore, the inertial term in Eq. (1) is

negligible compared to viscous term. Moreover, for pure

electroosmotic flow in a 2-D straight microchannel there

is no pressure gradient, and hence the electroosmotic

body force term is counterbalanced by the viscous term.

In a two-dimensional straight channel, the steady elec-

troosmotic velocity distribution becomes [10]

uðx; yÞ ¼ uHS 1

�
� w

f

�
ð5Þ

where f is the zeta potential and uHS is the Helmholtz–
Smoluchowski electroosmotic velocity, which is given by

uHS ¼ �efEx=l. For a straight microchannel (D > 10k),
the electroosmotic potential can be found by solving

Eq. (3) as [10]

w ¼ 4kBT
ez

tanh�1 tanh
ezf
4kBT

� �
exp

jyj � D
k

� �� �
ð6Þ

where k is the Debye length and D is the half channel

height. The electrokinetic and flow parameter ranges

studied for this analysis, as presented in Table 1, show

that the electrokinetic potential diminishes within the
effective Debye layer thickness, d99 ðd99 6 5kÞ. For more
information about the EDL, d99, electrokinetic poten-

tial, and electroosmotic velocities, readers are advised to

consult classical electroosmotic flow studies by Hunter

[21].

It is clear from Eqs. (5) and (6) that electroosmotic

flow velocity remains plug-like, except very close to the

wall. Therefore in Eq. (4), the viscous dissipation term is

only active within the effective EDL, d99, where local

velocity changes from uHS to zero. But, Joule heating

due to electric current will take place uniformly over the

entire volume. For pure electroosmotic flow in a 2-D

straight channel, the ratio of Joule heating to viscous

dissipation can be expressed as

Rev ¼
rE2

xð2DWLÞ

l ou
oy

	 
2

ð2d99WLÞ
ffi Dd99r

f2
l
e2

ð7Þ

where W is the channel width and L is the channel

length. From Eq. (7), it is clear that the ratio of gener-

ation terms, Rev, is independent of the externally applied

electric field, but it depends on characteristic dimen-

sions, effective Debye layer thickness, and conductivity.

Therefore, for typical electroosmotic flow with d99 ¼
10�8 m, r ¼ 10�3 S/m, l ¼ 10�3 N s/m2 and f ¼ �100
mV, the Joule heating term is dominating when D is 10

lm or higher. Hence we assume that our channel depth

is larger than 20 lm (DP 10 lm), and the viscous dis-

sipation term was neglected for this analysis.
3. Normalized energy equation

We normalize streamwise and cross-stream coordi-

nates ðx; yÞ with the half channel height D ðn ¼ x=D;
g ¼ y=DÞ. Here, D is used as the characteristic length as

opposed to hydraulic diameter, DH ðDH ¼ 4DÞ. Hence
the flow Reynolds and Nusselt numbers in this study will

be one fourth of their conventional values where those

numbers are calculated based on hydraulic diameter.

Here we assume that the channel half height, D, is much
smaller than the channel width W ðW � DÞ. Therefore,
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the flow can be treated as two-dimensional as shown in

Fig. 1. For convenience we use two different schemes to

normalize the temperature: one for constant surface

temperature as h ¼ ðT � TsÞ=ðTi � TsÞ and the other one

for constant wall heat flux as h ¼ kðT � TiÞ=Dq00s , where
Ts is the channel surface temperature, Ti is the inlet

temperature, and q00s , is the surface heat flux [17].

Therefore, for both boundary conditions, the normal-

ized governing equation becomes

PeT
oh
on

¼ o2h

on2
þ o2h
og2

þ G ð8Þ

where G is the normalized generation term that repre-

sents the ratio of Joule heating to surface heat flux. Since

we used two different expressions to normalize the

temperature, the normalized source term, G, also has

two different forms. For constant wall temperature, G
can be expressed as rð~E �~EÞD2=kðTi � TsÞ, and for con-

stant wall heat flux G is presented as rð~E �~EÞD=q00s . In
Eq. (8), PeT is the thermal Peclet number and can be

expressed as

PeT ¼ Re � Pr ¼ uHSD
m

� m
a
¼ uHSD

a

where a is the thermal diffusivity and Pr is the Prandtl
number. In this study, we only deal with thermal Peclet

number.
4. Thermal analysis

4.1. Isothermal wall condition

In this case, the normalized energy transport equa-

tion is subjected to the following boundary conditions

hðn ¼ 0; gÞ ¼ 1 ð9aÞ

hðn ! 1; gÞ < 1 ð9bÞ

oh
og

����
ðn;g¼0Þ

¼ 0 ð9cÞ

hðn; g ¼ 1Þ ¼ 0 ð9dÞ

Here, the normalized generation term (G) can be positive
or negative depending on the relative magnitude of the

inlet temperature, Ti, over the surface temperature, Ts.
The generation term, G ¼ 0 corresponds to Stokes flow

with no Joule heating. If the difference between surface

and inlet temperature reaches to zero, the generation

term goes to infinity. Therefore, this analysis is partic-

ularly valid when inlet temperature is different from

surface temperature. We obtain the solution of the

normalized temperature from governing equation (8)

based on boundary conditions presented by Eqs. (9).

Since Eq. (8) is a non-homogenous partial differential

equation, we divide it into two components such that the

total solution, h, becomes
h ¼ hh þ ho ð10Þ

where hh and ho are the homogenous and non-homo-

geneous part of the solution, respectively.

The homogeneous solution is obtained by using the

separation of variables technique as [22]

hh ¼
X1
n¼0

an expf�cnng cos
ffiffiffiffiffi
kn

p
g

	 

ð11Þ

where the eigenvalues, kn, are given by kn ¼ fðnþ 1
2
Þpg2,

the Fourier coefficients, an, are calculated as an ¼ 2�ð�1Þnffiffiffiffi
kn

p ,

and the exponential decay parameter, cn, is defined as

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2T þ 4kn

p
� PeT

2
:

On the other hand, the non-homogeneous solution has

been found as [23]

ho ¼
X1
n¼0

an � G
kn

� �
½1� expf�cnng� cos

ffiffiffiffiffi
kn

p
g

	 

ð12Þ

Therefore, the total solution for the non-dimensional

temperature distribution becomes

h ¼ hh þ ho

¼ G
2
ð1� g2Þ þ

X1
n¼0

an 1

�
� G

kn

�
expf�cnng cos

ffiffiffiffiffi
kn

p
g

	 


ð13Þ

where
P1

n¼0ðanknÞ cosð
ffiffiffiffiffi
kn

p
gÞ can be replaced as 1

2
ð1� g2Þ.

At any section of the channel, the normalized bulk mean

temperature can be obtained from following expression

hm ¼ Tm � Ts
Ti � Ts

¼ 1

umA

Z
AC

ðhuÞdA ð14Þ

where Tm is the mean temperature, um is the mean

velocity and AC is the cross-sectional area of the channel

(AC ¼ 2WD). Since the flow is plug like in most part of

the channel, we can assume u ¼ um ffi uHS, and the

normalized bulk mean temperature becomes

hm ¼ 1

2D

Z D

�D
hdy

¼ G
3
þ
X1
n¼0

2

kn

� �
1

�
� G

kn

�
expf�cnng ð15Þ

Hence, for the isothermal boundary condition, the local

heat transfer coefficient can be found as

hn ¼
q00s

Ts � Tm

¼ k
D

Gþ
P1

n¼0 2 1� G
kn

	 

expf�cnng

G
3
þ
P1

n¼0
2
kn

1� G
kn

	 

expf�cnng

ð16Þ
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and the corresponding local Nusselt number becomes

Nun ¼
Dhn

k
¼

Gþ
P1

n¼0 2 1� G
kn

	 

expf�cnng

G
3
þ
P1

n¼0
2
kn

1� G
kn

	 

expf�cnng

ð17Þ
4.2. Constant wall flux condition

Here the normalized governing equation (8) is sub-

jected to the following boundary conditions:

hðn ¼ 0; gÞ ¼ 0 ð18aÞ

hðn ! 1; gÞ < 1 ð18bÞ

oh
og

����
ðn;g¼0Þ

¼ 0 ð18cÞ

oh
og

����
ðn;g¼1Þ

¼ 1 ð18dÞ

In this analysis, heat flux q00s is positive when thermal

energy enters the control volume. Hence the normalized

generation term, G, is positive for heat addition into the

channel, and G is negative for heat rejection. We varied

the normalized generation term, G, between )1 and 1,

where G ¼ �1, 0, 1 corresponds to Joule heating equal

to surface heat removal, no Joule heating, and Joule

heating equal to surface heat addition, respectively. For

flow of de-ionized (DI) water (r ¼ 10�3 S/m) in a 40 lm
deep channel with an electric field, Ex ¼ 250 V/mm and

heat flux, q00s ¼ 1200 W/m2 will result in G ¼ 1.

In constant heat flux case, the boundary conditions

presented by Eqs. (18) are not homogeneous. In order to

obtain homogeneous boundary conditions at the wall,

we decompose the normalized temperature as [23]

h ¼ ha þ hp ð19Þ

where ha is the auxiliary temperature field and hp is a

particular type of function that provides homogeneous

boundary condition for the auxiliary temperature field.

For a particular function, hp ¼ ð1=2Þg2, the resulting

governing equation for the auxiliary temperature field

becomes

PeT
oha
on

¼ o2ha
on2

þ o2ha
og2

þ ½1þ G� ð20Þ

and the corresponding boundary conditions for the

auxiliary temperature are

haðn ¼ 0; gÞ ¼ � 1

2
g2 ð21aÞ

haðn ! 1; gÞ < 1 ð21bÞ

oha
og

����
ðn;g¼0Þ

¼ 0 ð21cÞ
oha
og

����
ðn;g¼1Þ

¼ 0 ð21dÞ

Like the constant surface temperature case, now we

decompose the governing equation of the auxiliary

temperature into two components: one contains the

homogeneous part and the other carries the non-

homogeneous part so that

ha ¼ hh þ ho ð22Þ

Using the separation of variables technique, we find the

homogeneous solution as

hh ¼ �b0 �
X1
n¼1

bn expf�cnng cos
ffiffiffiffiffi
kn

p
g

	 

ð23Þ

where kn ¼ ðnpÞ2, cn �
ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

T
þ4kn

p
�PeT

2
, b0 ¼ 1

6
and bn ¼ 2ð�1Þn

ðnpÞ2 .

The non-homogeneous solution becomes, ho ¼
ð1þG
PeT

Þn. Therefore the total solution for the normalized

temperature distribution in constant wall heat flux can

be written as

h ¼ hp þ hh þ ho

¼ 1þ G
PeT

� �
n þ

X1
n¼1

bn½1� expf�cnng� cos
ffiffiffiffiffi
kn

p
g

	 


ð24Þ

where hp ¼ 1
2
g2 ¼ b0 þ

P1
n¼1 bn cosð

ffiffiffiffiffi
kn

p
gÞ. Hence the

normalized surface temperature becomes

hs ¼
1þ G
Pe

� �
n þ

X1
n¼1

2

kn
½1� expf�cnng� ð25Þ

For plug like electroosmotic flow velocity, the normal-

ized bulk mean temperature can be found as

hm ¼ 1

umA

Z
AC

ðhuÞdA ¼ 1

2D

Z D

�D
hdy ¼ 1þ G

Pe

� �
n ð26Þ

Therefore, the local heat transfer coefficient can be

obtained as

hn ¼
q00s

Ts � Tm
¼ k

D
1P1

n¼1
2
kn
½1� expf�cnng�

ð27Þ

and the corresponding local Nusselt number becomes

Nun ¼
hnD
k

¼ 1P1
n¼1

2
kn
½1� expf�cnng�

ð28Þ
5. Discussion of results

For both isothermal and constant surface heat flux

channel surface thermal conditions, the analytical solu-

tions for local temperature, wall temperature, bulk mean

temperature, local heat transfer coefficient, and local

Nusselt number are obtained in terms of infinite series
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Fig. 2. Non-dimensional temperature, h, distribution across the
channel in pure electroosmotic flow at different downstream

locations, n, for both walls subjected to isothermal conditions at
PeT ¼ 1:0 for (a) G ¼ �1, (b) G ¼ 0, and (c) G ¼ 1.
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solutions as presented by Eqs. (13)–(17) and (24)–(27).

Numerical techniques are used to find the convergence

results for the above-mentioned parameters with an

accuracy of 99.99% by summing at least 1000 terms of

the infinite series. In the absence of any special func-

tions, convergence of the series was straightforward

without any numerical difficulty. Analytical solutions

are presented for DI water for Re < 1, Pr ¼ 7, and

D > 1000k. Therefore, the hydrodynamic entry length is

negligible, and the uniform ‘‘plug-like’’ velocity is justi-

fied from the very beginning of the channel.

5.1. Isothermal wall condition

The normalized fluid temperature distribution, h,
across the channel is shown in Fig. 2 at different axial

locations for Peclet number, PeT ¼ 1. Due to the sym-

metric hydrodynamic and thermal boundary conditions,

we have plotted temperature distributions for the upper

half of the channel. Although the analytical result ob-

tained in Eq. (13) is valid for any finite value of the

normalized source term (G), we have presented the

temperature distribution for only three different source

term values (G ¼ �1, 0, 1).
Fig. 2(a) shows the temperature development along

the channel for a dimensionless source term G ¼ �1.
For the negative value of the non-dimensional source

term, the channel surface temperature is higher than the

inlet temperature of fluid (Ts > Ti). The normalized

temperature becomes zero at the surface (g ¼ 1) to

conserve the isothermal boundary condition at the wall.

At the entry, the fluid temperature is very close to the

inlet temperature, and the normalized temperature be-

comes unity across the channel. In the entry region,

since the surface temperature is higher than the fluid

temperature, the heat flux enters into the channel for

G ¼ �1. However, as the fluid travels along the channel,
the normalized fluid temperature (h) and the wall heat

flux decrease, but the dimensional fluid temperature (T )
increase due to Joule heating.

Further down the channel, both normalized fluid

temperature and wall heat flux become negative, and the

temperature profile does not change anymore on or after

n ¼ 10. Therefore, we obtain thermally fully developed

region within 10 characteristic dimensions from the en-

try. In the fully developed region, the thermal energy

leaving through the boundary is equal to the heat gen-

erated by the Joule heating.

Fig. 2(b) shows the normalized temperature distri-

bution for the negligible or no Joule heating case. This is

a classical heat transfer situation where a fully developed

flow with uniform (slug flow) velocity passes through a

2-D isothermal microchannel. Although Joule heating

always exists in the electroosmotic flow, we presented

that in order to compare with the existing literature. In

this case, the normalized temperature decreases along
the channel as fluid travels towards the downstream

direction. However, the non-dimensional temperature

never goes beyond zero, and both fluid and surface

temperature reach the same value by the 10 channel
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characteristic dimension from the inlet, n ¼ 10. Without

internal heat generation, the heat transfer between the

channel and environment takes place only in the entry

region. In the entry region, the net wall heat flux is po-

sitive or negative, depending on the relative magnitude

of fluid inlet temperature, Ti, over surface temperature,
Ts. On the other hand, the rest of the channel has no

temperature change.

The normalized temperature distribution across the

channel for the positive source term, G ¼ 1, is presented

in Fig. 2(c). In this case, the fluid inlet temperature is

higher than the channel surface temperature (Ti > Ts).
Unlike the negative source term (G ¼ �1), the normal-
ized temperature ðhÞ is always positive. Therefore, fluid
temperature for this case is always higher than the

channel surface temperature. Here both local fluid

temperature and heat flux decrease as the flow pro-

gresses, but they do not change after reaching n ¼ 10.

After that, the amount of heat rejected from the channel

is balanced with the volumetric thermal energy genera-

tion due to Joule heating.

Fig. 3 shows the local Nusselt number distribution

along the channel for all three cases (G ¼ �1, 0, and 1)

presented in Fig. 2 for PeT 6 5. Since the local Nusselt

number is the same for each case after reaching the fully

developed condition, they have been presented up to

n ¼ 10. For isothermal channel surface condition, the

Nusselt number is very high at the entry point, but it

decays abruptly to reach a flat value within one char-

acteristic length (D). The local Nusselt number distri-

bution along the channel also identifies the exact

location where the flow is thermally fully developed. The

fully developed Nusselt number is independent of the

Peclet number in the electroosmotically driven slug flow

region, but it depends on the magnitude of the source

term as shown in Fig. 3. For both positive and negative

source terms considered in this study (G ¼ 1 and )1),
the Nusselt number reaches a value of 3.0 in the fully

developed region. On the other hand, without Joule

heating the heat transfer characteristics are identical to

the classical isothermal heat transfer in a slug flow, for

which the fully developed Nusselt number is 2.467 [18].

5.2. Constant wall flux condition

Analytical solution for normalized temperature, h,
distribution within the channel is presented in Eq. (24),

and the corresponding wall temperature distribution is

given in Eq. (25). The first linear term of Eq. (24) shows

the temperature variation only on the streamwise

direction, while the second term has contribution from

both streamwise and cross-stream directions. In Fig. 4,

we show the normalized wall temperature (hs) distribu-
tion along the channel for three different values of gen-

eration term, though our analytical results are valid for

any value of non-dimensional generation term, G. Here

the linear first term, in normalized wall temperature

distribution (Eq. (25)), causes a monotonic temperature
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change with axial location for any value of G, except for
G ¼ �1 case. For G ¼ �1, the amount of Joule heating
is equal to the surface heat rejection, and hence the

dimensional wall temperature (Ts) reaches a constant

value after the thermal entry region. Although non-

dimensional wall temperature can change a couple of

orders of magnitude in the downstream direction (for

G 6¼ �1), the dimensional temperature change, (Ts � Ti)
is less than 5 K due to the conversion factor q00sD=
k ¼ 5� 10�4 K, even for an external electric field,
~E ¼ 100 V/mm and electrical conductivity, 300 lS/m in a

20 lm deep channel. Therefore, temperature indepen-

dence on fluid properties can be justified at any section

of the channel.

The normalized temperature difference, Dh ¼ hs � h,
distribution across the channel is plotted in Fig. 5 at

different axial locations for PeT ¼ 1. The general trends of

normalized temperature difference, Dh, distribution re-

main same for any value of G. The temperature distri-
bution is almost uniform at the beginning of the channel

(n ! 0:0), and the corresponding fluid temperature is

very close to inlet temperature, Ti. As the flow proceeds

along the channel, the non-dimensional temperature

difference (Dh) increases, especially at the centerline, until
it reaches a constant value of 0.5 at the centerline. Fig. 5

indicates that there is no change of Dh distribution across
the channel after ten characteristic dimensions from the

entrance, n ¼ 10. However, the dimensional temperature,

T ðx; yÞ, distribution changes along the channel since the

wall temperature, TsðxÞ, varies in the downstream direc-

tion. In following section, we discuss the dimensional

temperature distribution for three different normalized

generation terms (G ¼ �1, 0, and 1).
For G ¼ �1 case, the heat is taken away from the

channel by external means (q00s < 0), and there is no

change in the wall temperature after the thermally

developing region (refer to Fig. 4). Therefore the

dimensional fluid temperature (T ) is higher than the

channel surface temperature (Ts), although the non-

dimensional temperature difference, Dh, is positive

within the fluid. On the other hand, in case of positive

source term (G ¼ 1), both heat generation and heat

addition take place simultaneously. As expected, both

surface and centerline temperature increase as the flow

proceeds along the downstream direction, and the sur-

face temperature is always higher than centerline tem-

perature.

The no Joule heating case (G ¼ 0) is very similar to

classical heat transfer study for constant surface heat

flux without any generation. There could be two possible

scenarios: heat rejection from the channel and heat

addition to the channel. For heat rejection from the

channel, both dimensional surface and centerline tem-

peratures decrease. On the other hand, for heat addition

both dimensional surface and centerline temperature

increase. From Fig. 5, it is clear that the dimensional

surface temperature is higher than the fluid temperature,

if heat is added in the system, and vice versa. We also

obtained temperature distribution (not presented here)

at high Peclet number flows for G ¼ 0, and our results

replicate the existing analytical work [17,18].

The mean temperature, which is presented by Eq.

(26), shows only linear dependence on axial positions.

However, the difference between non-dimensional sur-

face and mean temperature, (hs � hm), is independent of
the source term G. Therefore, in the fully developed
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region we obtain identical heat transfer coefficient and

Nusselt number for any value of Joule heating and

external heat flux. Fig. 6 shows the local Nusselt number

distribution along the channel for different values of the

Peclet number. Within the microflow regime considered

in this study, the heat transfer characteristics are inde-

pendent of the flow Reynolds number, except in the

developing region where the Nusselt number is very

high. From Fig. 6, it is clear that the flow is thermally

fully developed within five characteristic dimension from

the entrance, n ¼ 5, and the corresponding Nusselt

number for this case is 3.01. Therefore the Nusselt

number in the fully developed region is within 1% of that

of fully developed uniform flow with no Joule heating

case reported earlier [17,18].
6. Summary and conclusions

We obtained analytical solutions for heat transfer

characteristics of electroosmotically driven Newtonian

fluid in two-dimensional straight microchannels for

constant zeta potential, buffer concentration, and exter-

nal electric field. The energy equation for electro-

osmotically originated flows have been analyzed for

both constant surface temperature and constant wall

heat flux thermal boundary conditions in the presence of

significant Joule heating. This analysis is based on

infinitesimal Debye length (k=DP 1000), and hence a

plug like uniform velocity profile is assumed throughout

the channel. Our analysis resulted in the following:
• In electroosmotically driven microchannel flows, the

Joule heating contribution is important if the channel

thickness is higher than 20 lm.
• For isothermal channel surface condition, the local

fluid temperature decreases for positive source term

(G > 0) and increases for negative source term

(G < 0), along the channel, before it reaches an iden-

tical profile. Although both local and mean (normal-

ized) temperature is a function of the source term, the

normalized heat transfer coefficient reaches the same

value for both positive and negative source terms as

long as the magnitude of G is the same.

• In constant surface heat flux condition, the local fluid

temperature increases monotonically along the chan-

nel for positive and no source term (GP 0). But for

the negative source term (G < 0), the local fluid tem-

perature may increase or decrease depending on the

relative values of G.
• For surface heat flux case, the Nusselt number does

not depend on the magnitude of the source term.

• Under no Joule heating case, our results verify the

Nusselt number of classical slug flows in 2-D chan-

nels.

• Within the thermally fully developed region, the local

Nusselt number is independent of the Peclet number

for the electroosmotic microflow region considered in

this study.
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